Systems Analysis & Design

Dr. Arif Sari

Email: arif@arifsari.net

Course Website: www.arifsari.net/Courses/

Course Textbook: Systems Analysis and Design With UML 2.0

An Object-Oriented Approach, Second Edition

Chapter 7: Behavioural Modelling

Adapted from slides © 2005 John Wiley & Sons, Inc.

Key Ideas

- Behavioral models describe the internal dynamic aspects of an information system that supports business processes in an organization
- Key UML behavioral models are: sequence diagrams and behavioural state machines

Objectives

- Understand the rules and style guidelines for sequence diagrams and behavioral state machines.
- Understand the processes used to create sequence diagrams and behavioral state machines.
- Be able to create sequence diagrams and behavioral state machines.
- Understand the relationship between the behavioral models and the structural and functional models.

BEHAVIORAL MODELS

Purpose of Behavioral Models

- Show how objects collaborate to support each use case in the structural model
- Depict the internal view of the business process
- To show the effects of varied processes on the system

Interaction Diagram Components

Objects

Instance of a class

Operations

Send and receive messages

Messages

Tell object to execute a behavior

Sequence Diagrams

- Illustrate the **objects** that participate in a use-case
- Show the **messages** that pass between objects **for a** particular use-case

Example Sequence Diagram Make Appointment

Dennis: SAD
Fig: 8-1 W-30 100% of size
Fine Line Illustrations (516) 501-0400

Sequence Diagram Syntax

ACTOR	
OBJECT	anObject:aClass
LIFELINE	
EXECUTION OCCURRENCE (FOCUS OF CONTROL)	
MESSAGE	aMessage()
OBJECT DESTRUCTION	X

Building a Sequence Diagram

- Determine the **context** of the sequence diagram
- Identify the participating objects
- Set the lifeline for each object
- 4. Add messages
- Place the **execution occurrence** (focus of control) on each object's lifeline
- 6. Validate the sequence diagram

Normal Flow of Events:

- 1. Customer submits a search request to the system.
- 2. The system provides the customer a list of recommended CDs.
- 3. The customer chooses one of the CDs to find additional information.
- 4. The system provides the customer with basic information &

CD Reviews

- 5. The customer calls the maintain order use case.
- 6. The customer iterates over 3 through 5 until finished shopping.
- 7. The customer executes the checkout use case.
- 8. The customer leaves the website.

Dennis: SAD Fig: 8-5 W-32 100% of size Fine Line Illustrations (516) 501-0400

Behavioral State Machines (State Chart Diagrams)

The behavioral state machine is a dynamic model that shows the different states of the object and what events cause the object to change from one state to another, along with its responses and actions.

Elements of a Behavioral State Machine

- States (idle conditions)
- Events (triggers)
- Transitions (changes in state)
- Actions (cause transitions)
- Activities (groups of actions)

Example Behavioral State Machine Diagram

Behavioral State Machine Diagram Syntax

A STATE	aState
AN INITIAL STATE	
A FINAL STATE	
AN EVENT	anEvent
A TRANSITION	
A Frame	Context

Building Behavioral State Machine Diagrams

- Set the context
- Identify the initial final, and stable states of the object
- Determine the order in which the object will pass through stable states
- Identify the events, actions, and guard conditions associated with the transitions
- Validate the state machine diagram

Dennis: SAD
Fig: 8-15 W-38a 100% of size
Fine Line Illustrations (516) 501-0400

Summary

- Sequence diagrams illustrate the classes that participate in a use case and the messages that pass between them.
- Behavioral State Machine diagrams show the different states that a single class passes through in response to events.

